
173

PART 7. TREE ADJOINING GRAMMARS

7.1 TAGS

I have argued that Dutch cross serial dependencies are outside the scope of context

free grammars. But how far outside are they? A very useful framework for

comparing grammar formalisms for the analysis of natural language that go beyond

context free grammars, and for studying these questions, has been developed by

Aravind Joshi. It is based on the idea of taking the I-sets and A-sets, that we

developed in the course of Parikh's theorem, as grammars in their own right. Such

grammars are called tree adjoining grammars.

Before, the notions of I-trees and A-trees were defined as parse trees in a given

context free grammar. Since we don't have such a grammar now, we need to define

these notions independently.

 A vocabulary V = VN  VT is the union of a finite set VN of non-terminal

symbols, containing S, and a finite set VT of terminal symbols, where VN and

VT are disjoint.

An I-tree in V is any tree with topnode labeled S, yield in VT*, non-terminals

from VN on the non-leaves.

An A-tree in V is any tree with topnode some non-terminal X in VN, yield of

the form αXβ, with α,β in VT*, and non-terminals for VN on the non-leaves.

A tree adjoining grammar, TAG, is a set of elementary trees EV = IV  AV,

 where IV, the set of initial trees, is a finite set of I-trees in V, and

 AV, the set of auxiliary trees, is a finite set of A-trees in V.

Tree adjunction:

Let T be an I-tree or an A-tree in V and let TX be an A-tree in V with toplabel

X, let n be a node in T with label X:

ADJ[T,A,n] is the result of adjoining A in T at node n, where adjunction is as

we have defined before.

Note that this definition is a bit wider than what we have defined before: it allows

adjunction not only in I-trees, but also in A-trees.

FACT: If T is an I-tree, then ADJ[T,TX,n] is an I-tree, if defined.

 If T is an A-tree, then ADJ[T,TX,n] is an A-tree, if defined.

We will define for tree adjunction grammars two notions of derivation. The first is the

notion we have used before, the second is new. The notions will be equivalent for

tree adjoining grammars, but not for the later extension of the theory to multiple

adjunction.

174

I. DER: ADJOIN AUXILIARY TREES IN DERIVED I-TREES

DERE[IV], the set of derived I-trees in EV, is the smallest set of I-trees in V

such that:

 1. IV  DERE[IV]

 2. If T  DERE[IV] and TX  AV, n a node in T,

 then ADJ[T,TX,n]  DERE[IV], if defined.

On this notion, you always adjoin into an initial or derived I-tree, but what you

adjoin with is not just an A-tree, but an auxiliary tree in AV.

II. DER*: ADJOIN DERIVED A-TREES IN ELEMENTARY TREES

 DERE*[AV], the set of derived A-trees in EV, is the smallest set of A-trees in

V such that:

1. AV  DERE*[AV]

2. If TX  AV and TY  DERE*[AV], and n a node in TX,

 then ADJ[TX,TY,n]  DERE*[AV], if defined.

DERE*[IV], the set of derived I-trees in EV,, is the smallest set of I-trees in V

such that:

 1. IV  DERE*[IV]

 2. If I  IV and TX DERE*[AV], and n a node in I,

 then ADJ[I,TX,n]  DERE*[IV], if defined.

On this notion, you build up, from an elementary auxiliary tree a derived A-tree by

adjoining a derived A-tree into it. All the tree building takes place in the A-tree.

Finally, you get an I-tree by adjoining the complex A-tree into an initial tree.

So on this notion of derivation, what you adjoin can be a derived A-tree, but

 you never adjoin into derived trees, only into elementary trees.

FACT: For any tree adjunction grammar E = IV  AV:

 DERE[IV] = DERE*[IV]

Thus, for TAGs indeed the two notions of derivation are equivalent.

It can be proved that TAGs, as defined here, are a bit richer than context free

grammars, but not a lot, and in fact, not enough to be interesting from a grammatical

point of view. That is, while TAGs generate all context free languages and some non-

context free languages, none of the non-context free languages that we have discussed

are generated (like a
n
b

m
c

n
d

m
). The reason is, that you cannot control where you can

adjoin and where not. On the first derivation notion, if T contains label X, it is not

just that you can adjoin an auxiary tree with toplabel X in T, but you can adjoin that

auxilary tree at any node in T where X occurs. This means typically that you cannot

prevent unwanted adjunctions.

175

TREE ADJOINING GRAMMARS WITH CONSTRAINTS

For this reason, tree adjoining grammars have been extended with constraints.

Let EV be a tree adjoining grammar as above.

A tree with constraints in AV is an I-tree or an A-tree in V with on each non-

terminal node n two constraint labels: Cn and On, where:

Cn  AV and On  AV.

Cn is called the constraint set.

On is called the obligatory adjunction set.

Thus, the constraint labels that occur at a node are (finite) sets of auxiliary trees from

AV.

Cn is going to mean:

 Only trees derived from auxiliary trees in Cn can be adjoined here.

If Cn = AV there are no constraints on adjunction at node n. In this case I will write *

instead of Cn.

If Cn = Ø then nothing can be adjoined at node n. In this case I will leave out Cn.

On is going to mean:

 Some tree derived from one of the trees in On must be adjoined at this node.

If On = Ø, there is no obligatory adjunction at this node. In this case I will leave out

On.

We incorporate these notions as constraints on adjunction:

I. WITH DER.

Let T be an I-tree in V with constraints in AV, n a node with label X, Cn,On, and

TX an auxiliary tree with constraints in AV with with toplabel X. Then:

 ADJ[T,TX,n] is only defined if TX  Cn and if On  Ø then TX  On

II. WITH DER*.

Let Z  AV

DERE*[Z], the set of A-trees derived from Z, is the smallest set of A-trees such that:

 1. Z  DERE*[Z]

 2. If TX DERE*[AV] and n a node in Z,

 then ADJ[Z,TX,n]  DERE*[Z], if defined.

Let E be an elementary tree with constraints in AV, n a node with label X, Cn, On, and

TX an A-tree with constraints in AV with toplabel X. Then:

 ADJ[E,TX,n] is only defined if

1. for some Z  Cn: TX  DERE*[Z]

 2. if On  Ø, for some Z  On: TX  DERE*[Z]

176

So, labels Cn and On on node n provide input constraints on the adjunction at that

node. In ADJ[E,TX,n], the labels Cn and On on node n have disappeared and are

replaced by the constraint labels of the topnode and bottom leaf node of TX.

With obligatory constraints, we need to define the set of generated trees separately.

 T(EV), the set of I-trees generated by EV is:

 T(Ev) = {T  DERE[IV]: for every node n in T; On = Ø}

 L(EV) = {α: for some T  T(EV); α = yield(T)}

 T*(EV), the set of I-trees *-generated by EV is:

 T*(EV) = {T  DERE*[IV]: for every node n in T; On = Ø}

 L*(EV) = {α: for some T  T*(EV); α = yield(T)}

FACT: for every tree adjoining grammar with constraints EV = IV  AV:

 T(EV) = T*(EV) (and hence L(EV) = L*(EV)).

So, also for tree adjoining grammars with constraints the two notions of derivation are

equivalent.

From now on, when we say tree adjoining grammars, TAGS, we mean tree adjoining

grammars with constraints.

The languages generated by tree adjoining grammars are called tree adjoining

languages, TALs.

TAGS with constraints are more powerful than TAGS without constraints. The

reason is that you can impose in an A-tree a different constraint on the top label from

the constraint on the non-terminal bottom label: other constraints can be imitated in

TAGS without constraints by introducing new category labels, but a TAG without

constraints must, by definition, have the same top label and bottom label in an A-tree.

FACT 1: For every context free grammar G there is a TAG E such that T(G) = T(E)

 (and hence L(G) = L(E)).

FACT 2: There are TAGs E such that L(E) is context free, but for no context free

 grammar G: T(G) = T(E).

FACT 3: The context free languages are properly contained in the TALs.

 The TALs are properly contained in the Index Languages (in fact, the TALs

 are the Linear Index Languages).

FACT 4: a
n
b

n
c

n
, a

n
b

m
c

n
d

m
, copy language αα are TALs.

FACT 5.1. There is a pumping lemma for TALs.

 a
n
b

n
c

n
d

n
e

n
, n1 is not a TAL, nor is ααα (but see multi adjunction below).

FACT 5.2: Every TAL is semi-linear.

FACT 5.3: Every TAL can be parsed in polynomial time.

(at worst in n
6
 steps, where n is the length of the input. For context free

languages, as we have mentioned, this is n
3
 steps)

177

JOSHI: A language is mildly context sensitive if it contains limited cross-serial

 dependencies, is semi-linear, and allows polynomial parsing.

So TALS are examples of mildly context sensitive languages.

EXAMPLE 1 (showing FACT 2). USING DER

E = I  A, I = {i}, A = {a}

i = S* a = S

 e a S*

 S b

1. e  L(E):

 i  DERE[I]

i: S*

 e

2. ab  L(E)

 t1 = ADJ[i,a,*]  DERE[I]

t1 S

 a S*

 S b

 e

3. aabb  L(E)

 t2 = ADJ[t1,a,*]  DERE[I]

t2 S

 a S

 a S*

 S b

 S b

 e

178

4. aaabbb  L(E)

 t3 = ADJ[t2,a,*]  DERE[I]

t3 S

 a S

 a S

 a S*

 S b

 S b

 S b

 e

L(E) = a
n
b

n
 n0

T(E) is not contextfree.

EXAMPLE 1. USING DER*

E = I  A, I = {i}, A = {a}

i = S* a = S

 e a S*

 S b

We take the same grammar, but use the other notion of derivation. We derive the

same set of trees.

1. e  L*(E):

 i  DERE*[I]

i: S*

 e

2. ab  L*(E)

 t1 = ADJ[i,a,*]  DERE*[I]

t1 S

 a S*

 S b

 e

179

3. aabb  L*(E)

 t4 = ADJ[a,a,*]  DERE*[A]

t4 S

 a S

 a S*

 S b

 S b

 t2 = ADJ[i,t4,*]  DERE*[I]

t2 S

 a S

 a S*

 S b

 S b

 e

4. aaabbb  L(E)

 t5 = ADJ[a,a]  DERE*[A]

t5 S

 a S

 a S*

 S b

 S b

180

 t6 = ADJ[a,t5]  DERE*[A]

t6 S

 a S

 a S

 a S*

 S b

 S b

 S b

t3 = ADJ[i,t6,*]  DERE*[I]

t3 S

 a S

 a S

 a S*

 S b

 S b

 S b

 e

181

EXAMPLE 2 (USING DER)

E = I  A, I = {i} A = {a}

i: S* a1: S

 e a S*

 b S c

i: S* with a: S with a: S with a: S

 e a S* a S a S

 b S c a S* a S

 e b S c a S*

 b S c b S c

 e b S c

 b S c

 e

L(E) = a
n
b

n
c

n

With DER*: delete e from the example and adjoin into S*.

 e

Without constraints you cannot enforce the alternation of adjunction of a1 and a2, and

you cannot generate a
n
b

n
c

n
.

Without constraints, the above grammar generates the following language L:

 L = {αc
n
: |a|α = |b|α = n and if n>o α ends in b}

This is not a
n
b

n
c

n
: aababbccc  L.

But L is not context free!

L  a
n
b

m
c

k
,n,m,k0 = a

n
b

n
c

n
!

Thus indeed tree adjoining grammars without constraints can generate non-context

free languages, but you need constraints to generate a
n
b

n
c

n
.

182

EXAMPLE 3 (USING DER)

E = I  A, I = {i}, A = {a1,a2,a3}

i: S* a1: S a2: S a3: T

 e a S* T* b T* d

 S c S T

Sample derivation:

i: S* +a1: S +a1: S +a2: S +a3 S

 e a S* a S a S a S

 S c a S* a S a S

 e S c T* T

 S c S b T* d

 e S c T

 S c S

 e S c

 S c

 e

L(E) = a
n
b

m
c

n
c

m

183

EXAMPLE 4 (USING DER)

E = I  A, I = {i}, A = {a1,a2,a3}

i: S* a1: S a2 S a3 S

 e a S* b S* c S*

 S a S b S c

i: S* with a1: S with a1: S with a2: S with a3: S

 e a S* a S a S a S

 S a a S* a S a S

 e S a b S* b S

 S a S b c S*

 e S a S c

 S a S b

 e S a

 S a

 e

L(E) = αα

184

EXAMPLE 5. JOSHI/KROCH

Using TAGs for long distance movement.

Only a simple example here (again,to avoid subject aux inversion, think of the CP as

the complement of Bill wonders).

i = CP

 DPn[+WH] C'

 which book C IP*

 e DP I'

 John Ik VP

 likes Vk DPn

 e e

a: IP*

 DP I'

 Mary Im VP

 believes Vm CP

 e C'

 C IP

 e

Adjoining a in i gives the effect of long distance movement.

185

i = CP

 DPn[+WH] C'

 which book C IP*

 e DP I'

 Mary Im VP

 believes Vm CP

 e C'

 C IP

 e DP I'

 John Ik VP

 likes Vk DPn

 e e

Limitations of TAGs:

We saw can generate a
n
b

n
c

n
. With a simple modification of the grammar given above,

we can generate a
n
b

n
c

n
d

n
 :

E = I  A, I = {i} A = {a}

i: S* a1: S

 e a S* d

 b S c

This builds up four homogenous stacks simultaneously from the middle: two above

the middle, two below the middle. But, obviously, there are only four such places

available, hence, this method does not extend to more than four stacks:

a
n
b

n
c

n
d

n
f
n
  TAL.

As David Weir puts it: context free grammars can count up to 2, while TAGs can
count up to 4.
Similarly, while we can generate ωω, the method given does not allow you to

generate ωωω, and indeed ωωω  TAL.
 There are more problems with strong generative capacity.

186

We have seen that in TAGs we can generate cross serial dependencies. But we are

more ambitious than that. We really want to generate them with the structures

suggested (I spell out the complex verb here as a tree):

 CP

 C S

dat NP I'

 Kim VP I

 S V e

 NP VP e

 Sam S V

 NP VP e

 Pat NP V

 haar pap Ik V

 zal V V

 helpen V V

 laten eten

Now, we can do this in a TAG, but only in a non-sensible way.

We need to first change the labels VP and V to labels X[VP] and X[V], where VP and

V are features on the same label X, so that we can have X[VP] at the top of an A-tree

and X[V] at the bottom. (This is not necessarily a problem, you need to do

womething similar for long distance extraction from a DP into a CP).

For instance, a TAG with the following I-tree:

I:

 CP

 C S

dat NP I'

 Kim X[V]*o I

 eten e

And as A-trees, first:

187

 X[VP]

 S V

 NP X[V]*o e

Sam V X[V]

 laten

(Here o indicates obligatory adjunction.)

which forms the derived tree:

 CP

 C S

dat NP I'

 Kim I

 e

 X[VP]

 S V

 NP X[V]*o e

Sam V X[V]

 laten eten

A second A-tree is:

 X[VP]

 S V

 NP X[V]*o e

 Pat V X[V]

 helpen

which gives the derived tree:

188

 CP

 C S

dat NP I'

 Kim I

 e

 X[VP]

 S V

 NP X[VP] e

Sam

 S V

 NP X[V]*o e

 Pat V X[V]

 helpen V X[V]

 laten eten

Finally, we assume the following A-tree:

 X[VP]

 NP X[V]

haar pap Ik X[V]

 zal

And this derived the correct structure.

This gramar derives the correct structure, but obviously in a non-sensible way, i.e. it

derives it in the wrong way. For instance, the A-tree

189

 X[VP]

 S V

 NP X[V]*o e

 Pat V X[V]

 helpen

is ridiculous, because Pat is in no way the argument of helpen.

So, we are not just interested in deriving the cross serial dependencies sentences with

the right structures, but also with reasonable derivations, meaning, for instance, that

they have to be derived with A-trees that have a sensible semantic interpretation.

We will not formulate the constraints here, but assume again some minimal consensus

notion: if you can derive a structure with grammar formalisms of a certain power, but

only with a derivation that no sensible linguist would entertain for independent

linguistic reasons (i.e. more than that the linguist happens not to like say TAGS), the

structure falls, for all linguistically relevant purposes outside the scope of the

grammars of that power. In this sense, Dutch and German crossserial dependencies

fall outside the capacity of TAGS: you cannot derive the correct structures with

TAGS in a sensible way. This is where multi adjunction comes in.

190

7.2. MULTI ADJUNCTION

Multi adjunction is simultaneous adjunction. The multi adjunction that we will

consider increases the generative power with respect to TAGs. But the resulting

multi adjunction TAGs are mildly contextsensitive.

Let EV = IV  AV be a TAG.

A multi component TAG based on EV is a set of elementary tree sets

 EV = IV  AV

 where: AV is a (finite) set of subsets of A .

 The set of auxiliary tree sets.

 IV is a (finite) set of singleton subsets of I.

 The set of initial tree sets.

Constraints on multi adjunction:
MCADJ[E,A,π] is only defined if:

 1. A is a derived auxilary tree set (defined below).

 2. E is an elementary tree set (i.e. E is in IV or in AV)

 3. π is a function that maps every tree TA in A onto a pair <TE,n>,

 where TE  E and n is a node in TE such that ADJ[TE,TA,n] is defined

 and such that for every T1,T2 in A: π(T1)  π(T2).

 (This means that no two trees in A can be adjoined in the same tree at the

 same node. Yes, the same tree, but then at different nodes.)

When defined, MCADJ[E,A,π] is again a tree set:

MCADJ[E,A,π] = { ADJ[Tπ1(T),T, π2(T)]: T  A }

 where π1(T) is the first element of the pair π(T) (a tree in E)

 and π2(T) is the second element of the pair π(T) (a node in that tree in E).

We need to similarly generalize the notions of constraints and obligatory adjunction.

I will not specify that here.

(Note: the above conditions are Weir's original conditions, for discussion and

improvement, see Kallmeyer 2005.)

191

ADJOIN DERIVED AUXILIARY TREE SETS INTO ELEMENTARY TREE

SETS (DER E*)

 DER E*(AV) is the smallest set of tree sets such that:

 1. AV  DER E*(AV)

 2. If A  AV and T DER E*(AV) then MCADJ[A,T,π]  DER E*(AV),

 if defined.

DER E*(IV) is the smallest set of tree sets such that:

1. IV  DER E*(IV)

 2. If I  IV and T DER E*(AV) then MCADJ[I,T,π]  DER E*(IV),

 if defined.

FACT: The members of DER E*(IV) are singleton tree sets.

T(EV) = {T: {T}  DER E*(IV) and T has no obligatory constraints}

L(EV) = {α: for some tree T in T(EV): α = yield(T)}

FACT 1: MCTAGs are stronger than TAGs in weak and strong generative capacity.

FACT 2: Every MCTAL is semi linear.

FACT 3: a1
n
….am

n
, n  0  MCTAL

 copyn[α]  MCTAL (n copies of α)
FACT 4: a1

n
….am

n
, n  0, m  0  MCTAL

 copy[α]  MCTAL (unbounded many copies of α)

where:
copy1[α] = α = {ω: ω  A*}

copy2[α] = αα = {ωω: ω  A*}

copyn[α] = copy n1[α]α = {βω: β  copy n1[α] and ω  α}

copy[α] = n1[α…α]n

192

EXAMPLE 1:

E = I  A, I = {{i}} A = {{a1,a2},{a3,a4}}

i: S

 A* B*

 e e

a1: A a2: B

 a A* b c B* d

a3: A a4: B

 b A* a d B* c

Let:

 π(a3) = <a1,A*>

 π(a4) = <a2,B*>

MCADJ[{a1,a2},{a3,a4}, π] = {t1,t2}

t1: A t2: B

 a A b c B d

 b A* a d B* c

 π(t1) = <a1,A*>

 π(t2) = <a2,B*>

MCADJ[{a1,a2} {t1,t2}, π] = {t3,t4}

t3: A t4 B

 a A b c B d

 a A b c B d

 b A* a d B* c

193

 π(t3) = <i,A*>

 π(t4) = <i,B*>

MCADJ[{{i}}, {t3,t4}, π] = {{t5}}

 S

: A B

 a A b c B d

 a A b c B d

 b A a d B c

 e e

Generated string:

aababbccdcdd

What more MCTAGs can generate depends on the size of the auxiliary tree sets.

Unlike TAGs, you can in principle generate: a1
n
...ak

n
, with k some finite bound.

EXAMPLE 2.

E = I  A, I = {{i}}, A = {{a1,a2,a3,a4,a5,a6}}

i: S

 A* B* C* D* F* G*

 e e e e e e

a1: A a2: B a3: C a4: D a5: F a6: G

 a A* b B* c C* d D* f F* g G*

1. Adjoin {a1,a2,a3,a4,a5,a6} into {a1,a2,a3,a4,a5,a6}. This gives {t1,t2,t3,t4,t5,t6}:

t1: A t2: B t3: C t4: D t5: F t6: G

 a A b B c C d D f F g G

 a A* b B* c C* d D* f F* g G*

194

2. Adjoin {t1,t2,t3,t4,t5,t6} into {{i}}. This gives {{t7}}:

 S

 A B C D F G

 a A b B c C d D f F g G

 a A* b B* c C* d D* f F* g G*

 e e e e e e

Generated language: a
n
,b

n
c

n
d

n
f
n
g

n
, n0.

We can reformulate this in terms of copy languages as well.

Clearly, a similar argument shows that you can generate for any n, the copy language

α…α(n times), the set of all strings consisting of n-copies of strings in Σ*.

But what you cannot, for instance, generate with MCTAGS is a language of

unbounded copies, like n>0 α…α(n times).

EXAMPLE 3: DUTCH CROSS SERIAL DEPENDENCIES
Finally, we come back to the Duth cross serial dependencies.

In the following grammar, I will only deal with the incorporation of the infinitives,

not the tensed auxiliary. That is, I will take the tensed auxiliary as part of the I-trees.

E = I  A, I = {{i1},{i2}}, A = {{a1,a2}}

i1: CP

 C IP

 dat DP I'

 Kim VP Ik

 V'* O= A zal

 DP V* O = A

 haar pap eten

(Semantics: λR.WILL(R(k,EAT)))

195

i2: CP

 C IP

 dat DP I'

 Kim VP Ik

 V'* O= A e

 DP V

 haar pap Ik V* O= A

 zal eten

(Semantics: λR.WILL(R(k,EAT)))

Th obligatory constraint says that some multi-adjunction must take place at the V'*

and V* node.

{a1,a2}:

a1: V' a2: V

 SC V V V*

 DP VP e β

 α V'*

 where α  {Sam, Pat} and β  {helpen, laten}

This is a schema, so among others we have:

a1,1: V' a1,2: V

 SC V V V*

 DP VP e helpen

 Sam V'*

(Semantics: λPλx.HELP(x,P(s)))

196

a2,1: V' a2,2: V

 SC V V V*

 DP VP e laten

 Pat V'*

(Semantics: λPλx.LET(x,P(p)))

1. Adjoin {a1(Pat),a2(laten)} into {a1(Sam),a2(helpen)}. This gives {t1,t2}:

t1: V' t2: V

 SC V V V

 DP VP e helpen V V*

Sam V' laten

 SC V

 DP VP e

 Pat V'*

(Semantics: λPλx.HELP(x,LET(s,P(p)))

197

Adjoining {t1,t2} into {i1} gives t5, into {i2} gives t6.

t5 CP

 C IP

dat DP I'

Kim VP Ik

 V' zal

 SC V

 DP VP e

Sam V'

 SC V

 DP VP e

Pat V'

 DP V

haar pap V V

 helpen V V

 laten eten

(Semantics: WILL(HELP(k,LET(s,EAT(p,pap))))

198

t6 CP

 C IP

dat DP I'

Kim VP Ik

 V' e

 SC V

 DP VP e

Sam V'

 SC V

 DP VP e

Pat V'

 DP V

haar pap V V

 zal V V

 helpen V V

 laten eten

(Semantics: WILL(HELP(k,LET(s,EAT([p,pap))))

What we see then is that Dutch cross serial dependencies are both weakly and

strongly within the capacity of multi component TAGs, and hence within the class of

phenomena that can be analyzed with mildly context sensitive tools (but see below).

This does tell us something about the power of incorporation. Even if we represent

incorporation through a restructuring operation, we have now analyzed the

'computational content' of that operation: we need an operation that goes beyond

simple context free tree building: already the weak generative capacity argument for

surface structure strings shows that. While simple adjunction is enough to get the

strings, TAGs do not give you the right trees from the right parts.

The point about cross serial constructions is that the verb taking a small clause and the

small clause subject must match. In terms of adjunction, they ought to be introduced

simultaneously. In TAGs this means that they should be part of the same auxiliary

tree. But they can't be in these structures.

199

But we can build up the tree by building up simultaneously the small clause structure

and the verb structure, each with simple adjunction, and use multi adjunction to build

the whole structure. This is what MCTAGs allow us to do.

200

7.3. LINEAR CONTEXTFREE REWRITE SYSTEMS

Linear Contextfree Rewrite Systems were introduced in Vijay-Shanker, Weir and

Joshi 1987. They are really a generalization of head grammars (in the format of

Vijay-Shanker 1987) and proved to be weakly equivalent to MCTAGs in Weir 1988.

(For much more about LCFRSs see Kallmeyer 2013).

 Since I think that the standard format of rewriting rules is obscuring somewhat

what is going on, I will use a format that brings that out most clearly.

In linear contextfree rewrite systems non-terminal symbols play a double role.

They are, as usual, category labels, but they are also sets of grammatical objects and

the rules are easier to understand if we think of them not as rewrite rules but as rules

determining the contents of these sets. For non-terminal A, I will use A inside the

rules and A for its interpretation as a set.

A Linear Contextfree Rewrite System is a structure G = <VN, VT, VAR, dim, S, R>

where:

 1. VN is a finite set of non-terminal symbols

 2. VT is a finite set of terminal symbols

 3. VAR is a finite set of variables

 4. VN  VT = Ø VN  VAR = Ø VT  VAR = Ø

 5. S  VN

 6. dim, the fan-out function is a function from VN toℕ
 dim(S) = 1

 7. R is a set of rules specified below.

We associate with every non-terminal A a set A of dim(A)-tuples

<α1,…,αdim(A)> with α1,…,αdim(A)  VT
*

The intuition is that instead of generating string α1…αdim(A), we generate substrings

 α1,….,αdim(A) and allow two things that we wouldn't allow for a string in a context

free grammar:

 -the positions in between the substrings are still open for grammatical

manipulation: α1α2….αdim(A) (which is what happens in a limited form in head

grammars)

 - the linear order of the substring is still open for grammatical manipulation.

dim(A), the fan-out of category A, determines how many positions open for

grammatical manipulation category A fixes.

The general form of the rules is:

 x  A ψ

 [if x1  A1 and … and xm  Am then x  A] (if  then ψ)

More specifically, rules are of the form:

[<ω1,…,ωdim(A)>  A] where ωi  VT* (for every index i)
 or

[if <X
1
1,…,X

1
dim(A1)>  A1 and …and <X

m
1,…,X

m
dim(Am)>  Am then <ω1,…,ωdim(A)>  A]

 where ωi  (VT  VAR)*, X
j
i  VAR, Ai  VN (for every index i,j)

201

Constraint: Let r  R and r = [if  then ψ]

 Every variable X that occurs in r occurs exactly once in  and exactly

 once in ψ

It is this constraint that keeps the formalism mildly contextsensitive.

Let A  VN.

A, the yield of A, is the smallest set such that:

1. If r = [<ω1,…,ωdim(A)>  A] then <ω1,…,ωdim(A)>  A

2. If r = [if <X
1

1,…,X
1
dim(A1)>  A1 and …and <X

m
1,…,X

m
dim(Am)>  Am then <ω1,…,ωdim(A)>  A]

 and <β
1

1,…,β
1
dim(A1)>  A1 and… and <β

m
1,…,β

m
dim(Am)>  Am

 then <α1,…,αdim(A)>  A, where αk = ωk[β
j
i /X

j
i], the result of replacing every

 variable X
j
i in ωk by phrase β

j
i

L(G) = {α: <α>  S}

An n-LCFRS grammar is an LCFRS grammar with fan-out at most n.

An n-LCFRS language is a language that has an n-LCFRS grammar.

This looks more complex than it is.

Example 1: a
n
b

n
c

n,
n > 0

1. [<a,b,c>  A]

2. [if <X,Y,Z>  A then <aX, bY, cZ>  A]

3. [if <X,Y,Z>  A then <XYZ>  S]

1. <a,b,c>  A 1. <a,b,c>  A 1. <a,b,c>  A

2. <abc>  S 2. <aa,bb,cc>  A 2. <aa,bb,cc>  A

3. abc  L(G) 3. <aabbcc>  S 3. <aaa,bbb,ccc>  A

4. aabbcc  L(G) 4. <aaabbbccc>  S

 5. aaabbbccc  L(G)

Example 2: a
n
b

n
c

n
d

n
f
n
, n  0

1. [<e,e,e,e,e>  A]

2. [if <X1, X2, X3, X4, X5>  A then <aX1, bX3, cX3, dX4, fX5>  A]

3. [if <X1, X2, X3, X4, X5>  A then <X1X2X3X4X5>  S]

202

Example 3: ααα

1. [<e,e,e>  A]

2. [if <X,Y,Z >  A then <Xa, Ya, Yc>  A]

3. [if <X,Y,Z >  A then <Xb, Yb, Yb>  A]

4. [if <X,Y,Z >  A then <Xc, Yc, Yc>  A]

5. [if <X,Y,Z >  A then <XYZ>  S]

1. <e,e,e>  A [by 1]

2. <a,a,a>  A [by 2]

3. <ab,ab,ab>  A [by 3]

4. <abb,abb,abb>  A [by 3]

5. <abbc,abbc,abbc>  A [by 4]

6. < abbcabbcabbc >  S [by 5]

7. abbcabbcabbc  L(G)

Example 4:

1. [<haar pap,eten>  A]

2. [if <X,Y>  A then <Pat X, Y>  B]

3. [if <X,Y>  B then <Sam X, laten Y>  B]

4. [if <X,Y>  B then <Kim X, helpen Y>  B]

5. [if <X,Y>  B then <X, heeft Y>  C]

6. [if <X,Y>  B then <X, Y heeft>  C]

7. [if <X,Y>  C then <XY>  D]

8. [<X>  D then <dat X>  S]

1. < haar pap, eten>  A

2. < Pat haar pap, eten>  B

3. < Sam Pat haar pap, laten eten>  B

4. < Kim Sam Pat haar pap, helpen laten eten>  B

5a. < Kim Sam Pat haar pap, heeft helpen laten eten>  C

5b. < Kim Sam Pat haar pap, helpen laten eten heeft>  C

6a. < Kim Sam Pat haar pap heeft helpen laten eten>  D

6b. < Kim Sam Pat haar pap helpen laten eten heeft>  D

7a. <dat Kim Sam Pat haar pap heeft helpen laten eten>  S

7b. <dat Kim Sam Pat haar pap helpen laten eten heeft>  S

8a. dat Kim Sam Pat haar pap heeft helpen laten eten  L(G)

8b. dat Kim Sam Pat haar pap helpen laten eten heeft  L(G)

Example 5

203

Haar pap helpen laten eten heeft Kim Sam Pat

1. [<haar pap, eten>  A1]

2. <e, Pat>  A2]

3. [if <X1,X2>  A1 and <X3,X4>  A2 then <X1,X2,X3,X4>  A]

4. [if <X1,X2,X3,X4>  A then <e X1,helpen X2,X3,Sam X4>  A]

5. [if <X1,X2,X3,X4>  A then <e X1,laten X2,X3,Kim X4>  A]

6. [if <X1,X2,X3,X4>  A then <X1,X2,heeft X3, X4>  B]

7. [if <X1,X2,X3,X4>  B then <X1X2X3X4>  S]

1. <haar pap, eten>  A1

2. <e, Pat>  A2

3. <haar pap, eten, e, Pat>  A

4. <haar pap, helpen eten, e, Sam Pat>  A

5. <haar pap, laten helpen eten, e, Kim Sam Pat>  A

6. <haar pap, laten helpen eten, heeft, Kim Sam Pat>  B

7. <haar pap laten helpen eten heeft Kim Sam Pat>  S

8. <haar pap laten helpen eten heeft Kim Sam Pat>  L(G)

The inspiration of LCRSs comes from string manipulation, but if you look at the

derivations given under example 3, you see that the derivation in the grammars given

puts the strings together much in the way that we did in the MCTAG above (and

example 4 generalizes that). This means that rewriting this grammar as a tree grammar

that builds the same trees as in the MCTAG should be manageable.

PROPERTIES OF n-LCFRS languages:

 LCFRSL = the class of languages generated by LCFRS grammars

FACT 1: LCFRSL is closed under union, concatenation, Kleene closure,

 intersection with a regular language, substitution.

FACT 2: all languages in LCFRS are semi-linear, allow polynomial parsing:

 there is pumping lemma for LCFRSL

FACT 3: LCFRSL = MCTAL

204

7.4. BEYOND CONTEXT FREE

JOSHI: A language is mildly context sensitive if it contains limited cross-serial

 dependencies, is semi-linear, and allows polynomial parsing.

Constant Growth
Joshi actually uses a weaker notion that semi-linearity, the Constant Growth Property:

a language has the constant growth property if its length of its strings grows

with increments smaller than a constant.

The discussion in Bhatt and Joshi 2004 makes it clear that Joshi is really thinking of

semilinearity, rather than constant growth.

While semilinearity is a highly interesting property when it comes to natural

languages, the constant growth property, when taken at face-value, is trivially

satisfied by natural languages: take a number n such that there exists an English

sentence of length n. What is the next number up where there exists an English

sentence? Well, obviously n+1 (stick in an adjective or an adverb).

 So I think we are better off defining mild contextsensitivity in terms of semi-

linearity.

Stable language classes

What we find is that in going beyond context free, we reach a first stable class of

grammar formalisms and languages in tree adjoining languages.

 TAL: the class of languages generated by:

 -Tree adjoining grammars

 -Combinatory categorial grammars

 -Head grammars

 -Indexed grammars with linear expansion (indices are copied onto one non-

 termimial daughter only).

 TAL  IL

A wide variety of grammar formalisms turned out to be weakly equivalent and

generate the mildly contextsensitive class of tree adjoining languages TAL.

By the equivalence with indexed languages with linear expansion, we know that

TALs are indexed languages.

Arguments concerning strong generative capacity: the preferred structures of cross

serial dependencies made us look for grammars that go beyond TAGs.

We formulated multi component tags, MCTAGs and their generated languages

MCTALs.

205

 MCTAL: the class of languages generated by:

 -Multi Component Tree Adjunction Grammars

 -Linear Contextfree Rewriting Systems

-Multiple Contextfree Grammars

-Simple Range Concatenation Grammars (see Kallmeyer 2013)

-Stabler's formalization of Minimalist Grammar (Stabler 2010) [with a caveat

 given below].

 TAL  MCTAL

 MCTAL is not a subset of IL

MCTALs are mildly contextsensitive, and form a class of languages MCTAL that

properly includes TAL. Arguably, MCTAL forms a second stable class of mildly

contextsensitive grammar formalisms and languages.

MCTAL and IL do not stand in an inclusion relation with respect to each other.

-Obviously there are indexed languages that are not in MCTAL:
n

a 2 is not-semilinear.

-But there are also languages in MCTAL that are not indexed languages.

This was proved in Engelfriet and Skyum 1976, I have not been able to find easy

examples to illustrate this.

Recent development (rather surprisingly) Sylvain Salvati, Salvati 2015:

MIX = {α  {a,b,c}*: |a|α = |b|α = |c|α}, the permutation closure of a
n
b

n
c

n
.

Salvati proved that MIX is in MCTAL. In fact, MIX can be generated by a LCFRS

with a fan-out of only 2!

This is surprising, because this means that the notion of 'locality' imposed on

MCTAGs does apparently not exclude languages like MIX in which the dependencies

do not seem very local, at least, at first sight. In other words, MCTAGs are more

powerful than originally thought. (And possibly strain the notion of 'limited cross-

serial dependencies' more than originally thought.)

 But remember that Bill Marsh in the 1980ies conjectured that MIX is not an indexed

language. That conjecture is still open. So, at this point MIX is an example of a

language known to be an MCTAL but of which it is not known whether or not it is an

indexed language.

Constraints on LCFRS grammars excluding MIX restrict LCFRS to well nested

LCFRSs, introduced by Uwe Mönnich (Mönnich 2010). See Kallmeyer for

definitions and discussion.

We will not discuss this further, rather we discuss challenges to the hypothesis that

natural languages are within the class MCTAL.

206

7.5. BEYOND MILDLY CONTEXT SENSITIVE

7.5.1. CHINESE NUMBERNAMES (Radzinsky 1991)

5 = wu

10
4
 = wan

10
8
 = wan wan or yi

10
12

 = for some speakers: wan wan wan but many prefer: wan yi

10
16

 = for some speakers: wan wan wan wan but many prefer: yi yi

10
12

 = zhao the highest lexical item

10
24

 = zhao zhao

10
36

 = zhao zhao zhao

So with zhao we get rid of the interference of higher number names.

Now look at the sets of strings:

R = {wu (zhao)
n1

 wu (zhao)
n2

 wu (zhao)
 n3

… wu (zhao)
nk1

 wu (zhao)
nk

: for every ni: if i  k:

ni  N}

R is, of course, a regular set.

N = {wu (zhao)
n1

 wu (zhao)
n2

 wu (zhao)
 n3

… wu (zhao)
nk1

 wu (zhao)
nk

:

for every n: if i  k: ni  N and ni1 > ni }

N is an indexed language, but not in MCTAL.

Radzinsky looks at the category of Chinese number names, call it NN, and claims:

NN  R = N. And concludes: the set of wellformed strings in the category of

Chinese number names is not in MCTAL.

Discussion I

Radzinsky is careful not to make a claim about the category of numerical phrases in

general. This is good, because the intersection argument is unlikely to hold for

numerical phrases in general.

Thus, the descending condition on Chinese number names is, of course, similar to

what we find in English:

(1) a. five thousand five hundred

 b. #five hundred five thousand .

 c. five hundred and five thousand

(1a) is an English numbername denoting a single number, (1b) is not, (1c) is.

Furthermore adjectival position usually allows only one numerical adjective phrase:

(2) a. There were thirty three students at the party.

 b ??There were thirty three ninety six students at the party.

 c. ??There were between thirty and fourty between thirty five and fourty five

 students at the party.

207

(The infelicity is not simply mathematical inconsistency as (2c) shows.)

If the constraint in (2) were absolute, we could use Radzinky's argument as an

argument about numerical adjectives. But the constraint is not absolute.

-In many languages (including Chinese, as argued by Li and Rothstein), ascending

sequences of numbers can be used as approximatives, and what numbers can occur in

the sequence is a question of setting up the context. (3a) is from the famous Dutch

translation Waar blijft de tijd of Jean Ferrat's chanson On ne voix passer le temps

(note that the list can consist of more items).

(3) a. Met drie, vier kinderen, ach dat went, je hebt geen tijd meer voor geluk.

 With three, four children, well, you get used to that, you no longer have time

 for bliss.

 b. There are five thousand fifty thousand maybe five hundred thousand molecules

 in the tube, but not more. (with pooh pooh intonation).

Thus, we see lists of ascending numbers in the adjectival prenominal position.

-Other kinds of contexts where you find sequences of ascending numbers in adjectival

position are contexts giving online process descriptions:

(4) [In a game show] Ok, the tap is open and out stream five hundred five thousand

 fifty thousand five hundred thousand f i v e m i l l i o n dollarcents! And the tap

 stops. Well, you will have a heavy time taking all that home. Please give them a

 warm applaus.!!!

This means that you cannot argue that the category of numerical adjectives requires

sequences of numbers to be descending (as they are in the numbernames (4b)).

(5) a. five hundred five thousand fifty thousand five hundred thousand five million

 b. five million five hundred thousand fifty thousand five thousand five hundred

For Chinese, this would mean that the intersection of R with the set of Chinese

numerical adjectives is not NN, and the argument does not go through for numerical

adjectives.

Discussion II
So this is not what Radzinsky is claiming.

He is only making a claim about the category of Chinese number names:

(5a) may be felicitous as an English numerical adjective phrase, but it is not an

English number name.

And it is part of knowing English that (5b) is an English number name and (5a) is not,

and part of knowing Chinese that strings in N are Chinese numbernames, but strings

in R  N are not.

I think we can accept this description of the facts without accepting Radzinsky's

conclusions.

208

What do we know when we know that (4b) is an English number name, and why do

we know it?

The answer is that we know that (4b) denotes a number, a single number, and we

know that, because for these expressions we have been given an algorithm for

determining which number the expression denotes, an algorithm that yields a

succesful result in (5a) and in (5c), but (in English) not in (5b):

(5) a. five million five thousand five hundred

 (5 × 10
6

) + (5 × 10
3

) + (5 × 10
2

)

 b. ??five million five hundred five thousand

 c. five million five hundred and five thousand

 (5 × 10
6

) + ((5 × 10
2

) + 5) × 10
3
)

There are two issues here.

1. If we assume a linguistic category of number names NN, do we assume that the

expressions that are of that category are exactly the expressions that denote numbers,

or do we assume, say, that the category NN is generally sequences of number

expressions (with and without and) and among those expressions there are felicitous

number names and infelicitous number names, where the first ones are the ones that

are defined (by one of the algorithms)?

In the latter case, the syntactic category of number names can be simply taken to be

regular or contextfree, and felicity is a semantic question: felicitous number names

are names that are known to denote numbers.

To take a not so linguistic example for comparison: take the category of Names of

British Royalty.
There are some generalizations within this class

like: Henry the Fifth is a Name of English Royaly,

and: the Fifth Henry is not (really) a name

and nor is: Buck the Third,

 or: Henry the Seventeenth

 or: Bonny Princess Ann

You could easily write a grammar generating all and only the Names of British

Royalty (even capturing the generalization tendencies).

However, there doesn't seem to be any particurly good reason to prevent generating

syntactically the names:

Henry the Seventeenth

William the Unready

Bloody Charles

just for the reason that they happen to be non-denoting at the present time, and are,

hence, infelicitous as Names of British Royalty.

209

2. If we assume a linguistic category of number names NN and we assume that the

expressions that are of that category are exactly the expressions that denote numbers,

we still do not have to assume that that category is syntactically defined.

We can assume the class of denoting number names as a well-defined semantic

category.

Thus, we can assume that there is no syntactic category of number names, there are

just number phrases.

Within the category of number phrases, we define a semantic subcategory of

felicitous number names, defined semantically.

This is in fact my own preferred strategy.

Note that when you apply this strategy to the category of Names of British Royalty,

you get the following:

there is no syntactic category of Names of British Royalty,

there is a syntactic category of noun phrases that Names of British Royalty are

part of (with a bit more syntax in them than other names, i.e. allowing

adjectivally modified noun phrases, noun phrases with epithets, etc.).

If you want a subcategy of noun phrases that are Names of British Royalty you will

have define this class in terms of denotation, and you will have to accept the fact that

this class is not a semantically regular class, in that the argorithm for determining

denotation is not semantically illuminating (and in fact is by and large not or not

much semantic at all).

This is, of course, different for number names: there the denotation determining

algorithms encode the "meaning" of the number names:

If you know how to apply the algorithm you know something very basic about how to

use number names.

Discussion III
Radzinsky discusses this strategy and claims that basically that strategy pushes the

same problem one level up: from the syntax to the syntax-semantics interface.

And he claims that if you look at the linguistic system as comprising both a syntax

and a syntax-semantic interface, and regarding this as one single grammatical system,

the combined system will have the same problem all over again.

This raises a very fair point. If we are concerned with semantically interpreted

grammar, asking just what is the complexity of syntax is only part of the real

problem: what is the complexity of the combined system is a reasonable question.

On the other hand, complexity issues of inference systems (logics) has been very well

studied; as we know, decidability issues come up much more easily here, so that

efficiency of semantic inference and semantic parsing is clearly not really on a par

with the efficiency of syntactic parsing.

210

In other words, we know that the problem of turning our nice linguistically insightful

semantic interpretation systems into semantically interpreted grammars for humans

requires solving complex problems of a totally different order than keeping our

combination rules semilinear.

So, at the interfact of syntax and semantics we need other techniques anyway, it is an

illusion to think that we can just extend the syntactic generation mechanism to a

syntax-semantics generation system of which we only need to require that it (the

combined object) be mildly contextsensitive.

 In this sense, I think that if we push the interpretation algorithm for number

names to the semantics or the syntax-semantics interface, the fact that the combined

syntax-interpretation system cannot be mildly contextsensitive is unlikely to be our

worst problem there.

This makes it rather a reasonable strategy to move the licensing of numbernames to

this level: push the problem to a level where a solution to more difficult problems

that we need to solve there anyway is likely to solve this one on the side.

In sum, even if we agree that the knowledge that (1a) and (1c) are felicitous number

names in English and (1b) is not, and that the intersection of R and NN, the class of

felicitous nunber names in Chinese is NN, we do not have to accept Radzinsky's

conclusion about Chinese number names being not mildly contextsensitive.

Native speakers have judgements about felicity, linguists interpret these and make

proposals as to what accounts for these judgements. Native speakers and linguistics

do not have judgements about whether the account for the judgements should be

syntactic or semantic.

Thus, even postulating the category NN as a linguistic category is a theoretical

decision, and so is deciding that it is a syntactic category.

(This in no way means, that I think that we linguists are unjustified in describing

number systems in the world's languages by using a category of Number Names. I

think that is perfectly fruitful. One just needs to be careful about what that implies for

the organization of the system that Native speakers use in interpreting and using their

language).

Discussion IV
Classical Chinese grammarians list a whole series of number names bigger than zhao.

Radzinsky feels free to ignore these because they are, as he claims, not part of the

active volcabulary of contemporary native speakers of Chinese. This is rather an

important decision, because, as we have seen, native speakers don't all accept wan

wan wan, some prefer wan yi.

So what do native speakers prefer when it comes to zhao zhao or zhao zhao zhao?

My native informant shrugged his shoulders, did notice the possibility of saying wan

wan, but his attitude was clearly something like: I'll decide when I get there.

211

And speakers don't seem to get there. Googling things like wu zhao zhao (by me and

by my informant) gave exactly zero finds.

Since we are dealing here with names, maybe the best strategy is the same as for

potential English Royalty names like Charles the 3
rd

 or William the 5
th

 : we'll accept

them when we get there.

7.5.2. CROSS SERIAL DEPENDENCIES AGAIN (Manaster Ramer 1987)

Some more data.

Above I assumed an analysis for Dutch where the auxilary incorporates into the verb

cluster, and ends up rightmost, or stays in I position, and ends up left most. This is

too simple an assumption, though.

We are now concerned with conjunctions. We have V conjunctions of the cluster like

(1), and the auxiliary can be on either side (as expected).

(1) a. dat Kim Sam Pat Ronya zal laten helpen kammen en helpen laten voeden

 that Kim Sam Pat Ronya will let help groom and help let feed

 that Kim will let Sam help Pat groom Ronya and let Sam help Pat feed Ronya.

 b. dat Sam Pat Ronya laten helpen kammen en helpen laten voeden zal

But we also have I-conjunctions, with different auxiliaries, and here the auxiliaries in

the conjuncts can be on either side:

(2)

a. dat Kim Sam Pat Ronya moet laten helpen kammen en zal helpen laten voeden

 that Kim Sam Pat Ronya must let help groom and will help let feed

b. dat Kim Sam Pat Ronya moet laten helpen kammen en helpen laten voeden zal

c. dat Kim Sam Pat Ronya laten helpen kammen moet en zal helpen laten voeden

c. dat Kim Sam Pat Ronya laten helpen kammen moet en helpen laten voeden zal

What this shows is that we must be able to make the sequence with the auxiliary at the

end into something that can be conjoined with the sequence with the auxiliary at the

beginning. There are various ways in which this can be achieved.

For instance the equivalent of:

adjoin the cluster [V helpen laten voeden]

to [I zal]: [I[V helpen laten voeden] [I zal]]

but allow this to be analyzed as [V [V helpen laten voeden] [V zal]],

allowing it to incorporate into the lower V-position.

Or allow in Dutch incorporation of the I-element on the either side.

So the facts about I-conjunction show that the analysis given so far needs more work.

212

We are not concerned with I conjunction here but with V conjunction.

Dutch allows conjunction inside lexical categories quite freely. The most extreme

example is (3):

(3) a. Deze bus rijdt niet op zon en feestdagen

 This bus rides not on [[Sun and holi] days]

 This bus doesn’t go on Sundays and holydays

And conjunction is possible inside the verb cluster as well:

(4) a. dat Kim Sam Pat Ronya zal laten helpen [kammen en voeden]

 b. dat Kim Sam Pat Ronya zal laten [helpen kammen en zien voeden]

 c. dat Kim Sam Pat Ronya zal [laten helpen kammen en helpen laten voeden]

As we have seen, the requirement in the verb cluster is that there cannot be less verbs

than noun phrases, although there can be less noun phases than verbs, because of

implicit arguments. This holds in the conjunction as well: we could have:

(5) a. dat Kim Sam Pat Ronya zal laten helpen [kammen en zien eten]

 that Kim will let Sam help Pat [groom Ronya and see Ronya eat]

 b. #dat Kim Sam Pat Ronya zal [voeden en laten helpen kammen]

In (5b) there are not enough verbs in the the first conjunct.

So the requirement that there have to be at least as many verbs in the verb cluster as

there are nouns in the NP sequence holds in conjunctions per conjunct.

But conjunction is unbounded: you can have as many conjuncts as you like.

This means that we have, in principle, a structure of the form:

NP
n
 [V

m1
 and V

m2
 and … and V

mk
], with n, m1,…,mk  N and n  m1,…,n  mk.

With this we can make an argument that Dutch is not an MCTAL. Manaster Ramer

gives the intersection with a regular set argument.

Manaster Ramer himself brings up an argument against accepting the arguments from

cross-serial dependencies. The crucial point of the data is that the number of verbs in

the sequence cannot be smaller than the number of noun phrase arguments. Manaster

Ramer argues that you cannot in fact control this. Namely, take a sequence of NPs

and Verbs, with more NPs than Verbs:

Kim Sam Pat Ronya – helpen voeren.

Manaster Ramer argues: you cannot exclude the possibility that Kim Sam is one

name, nameing one individual, and that Pat Ronya is one name, naming another

individual. In that case the same string counts as a grammatical string of Dutch, and

the intersection argument fails. Since there are no real linguistic constraints on what

counts as a name in Dutch, any argument concerning weak generative capacity is

doomed to fail.

213

I find this argument frivolous. The same argument shows that no string of English

words, with a transitive verb like kissed non-initial and non-final, like:

in lately kissed will the for

can be excluded from the set of sentences that are grammatical in English, because of

the novel that I will write in which the beautiful In Lately indeed kissed shy Wil the

For.

Manaster Ramer's own proposal is to move from weak generative capacity to what he

calls classificatory capacity, which basically means the capacity of the grammar to

characterize a construction or a subcategory.

My scepsis concerning this notion has been expressed more than once in this chapter:

it presupposes that there are constructions that the grammar isolates (like relative

clauses or possessive constructions) and it presupposes that we know that the relevant

subcategories are syntactic.

The better strategy is, I think, to accept that weak generative capacity is always a help

for diagnosing what ultimately should interest us more: strong generative capacity. It

is not hard to eliminate Manaster Ramer's counterexamples from the discussion via a

surface structure generative capacity argument (for instance, again, via case features).

It seems to me that for our purposes that is enough: the orginal argument

shows that sensible grammars for cross serial dependencies in Dutch, German and

Swiss German must go beyond contextfree, and Manaster Ramers argument shows

similarly, I think, that sensible grammars for cross serial in these languages must go a

bit beyond mildly contextsensitive, if we define that in terms of equivalence to

MCTAGs.

What do we need to add? Do we need to liberate MCTAGs from the requirement that

only a bounded number of adjunctions can take place simultaneously? That would

get the required result in one go, but it gives up the idea of dependencies that are in

some sense bounded.

 My suggestion is to think more about co-ordination. We have seen that co-

ordination is special in that we find 'across-the-board' phenomena. Co-ordination is

special too in that it is cross-categorial, there are no or hardly restrictions on which

categories can be co-ordinated, and in fact, co-ordination of non-constituent

categories have been discussed widely in the literature (under various names, things

like

[Kim kissed and Sam hugged] Pam.

Kim simultaneously [introduced Pam and gave the book] to Chomsky.

Semantically, co-ordination requires the co-ordinates to be of the same semantic type

(like: conjunction maps two two-place relations onto a two-place relation, etc.)

 We need to ask: how does co-ordination extend to MCTAGs?

Thus, with MCTAGs, we have derived auxiliary tree sets {α , β}, and we observe that

here too, α or β or both could be a co-ordinate structure. But in this case, co-

ordination in β is constrained by α. Let us use and for the relevant coordination

214

structure. Then the obvious way in which co-ordination would generalize to

MCTAGs is:

AND1: <α1, β> + <α2, β>  <α1 and α2, β>

AND2: <α, β1> + <α, β2>  <α, β1 and β2>

These operations easily generate Manaster Ramer's co-ordinations, and generate them

correctly: β1 and β2 can only be co-ordinated if each of them matches α. And we can

add as many copies as we want, with the same matching:

AND2: <α, β1 and β2> + <α, β3>  <α, β1 and β2 and β3>

This operation obviously does extend the generative capacity beyond MCTAGs: it is

an operation that takes two derived auxilary tree sets as input and gives a derived

auxiliary tree set as output. Such an operation we didn't have before in MCTAGs.

Of course, the diagnosis of what happens in co-ordination here is that you

want to co-ordinate derived verb sequences, and you can only do that, in the tree set

where they are derived, and that means, relative to the derived NP-sequences. This

analysis is actually, I think, within the spirit of Joshi's mildly context-senstive

grammars: I assume that polynomial parsing is not affected; The operations AND1

and AND2 do not affect semi-linearity; and, in fact, the number of simultaneous

adjunctions stays bounded.

The effect of unbounded adjunctions is created by liberalizing, for co-

ordination the requirement of involving elementary trees somewhat.

I suggest to name grammars that are semi-linear, allow polynomial parsing, allow at

most the cross-serial dependencies of mildly-context sensitive grammars, but allow

conjuntion generalized as above: grammars that are within the context free

corona.

 Thus, Dutch may not be an MCTAL language, but we may hope that it is a

language within the context free corona.

Whether it is I leave that for you to investigate.

215

7.5.3. A NOTE ON COPY MOVEMENT

Above I mentioned that Stabler's formalization of Minimalist Grammar is weakly

equivalent to MCTAGs. There is a caveat here: Stabler's movement operation is not

the operation whiuch is popular in some areas of the Minimalist program: copy

movement.

Copy movement is a movement transformation whereby at each landing site,

the transformation doesn't leave a trace, but a full copy of the moved tree.

(1) Which boy does Mary think that Bill knows that Henry regrets that Mary likes.

(2) Which boy does Mary think which boy that Bill knows which boy that Henry

regrets which boy that Mary likes which boy.

Since the length of the wh-phrase is unbounded (which boy, which boy that Mary

likes, which boy that Mary likes that Bill hates,...) and the number of landing sites

is unbounded (as we see in (1), it is easy to see that copy movement is not within the

capacity of TAGs, and not within the capacity of MCTAGs, since we minimally get a

language of unbounded many unbounded copies.

(3) Which boy that every girl thinks Jan is in love with does Mary think Which

boy that every girl thinks Jan is in love with that Bill knows Which boy that every

girl thinks Jan is in love with that Henry regrets Which boy that every girl thinks

Jan is in love with that Mary likes Which boy that every girl thinks Jan is in love

with.

 Whether copy movement is in the context free corona or not depends on what

you decide to want the operation to do (if you want it in the first place). This means

that the question can hardly be formulated in a non-theory internal way (which makes

the situation similar to the status of general transformations in earlier syntactic

theory). Thus, whether copy-movement will put natural language grammars outside

the CF corona, whether it will stay within the CF corona, or whether it will itself

actually go the way of earlier transformations (as it may well) lies in the future of

theory development.

